
without the nicotine patch.JAMA. 1994;271:
589-594.

14. Group Health Association ofAmerica, Inc.
HMO Industry Profile: 1993 Edition. Wash-
ington, DC: Group Health Association of
America, Inc; 1993.

15. Silagy C, Mant D, Fowler G, Lodge M.
Meta-analysis on efficacy of nicotine re-
placement therapies in smoking cessation.
Lancet. 1994;343:139-142.

16. Fiore MC, Smith SS, Jorenby DE, Baker
TB. The effectiveness of the nicotine patch

Editorials and Annotations

for smoking cessation: a meta-analysis.
JAMA. 1994;271:1940-1947.

17. Gilchrist V, Miller RS, Gillanders WR, et
al. Does family practice at residency teach-
ing sites reflect community practice? JlFam
Pract. 1992;37:555-563.

Annotation: Accounting for the Effects of Both Group- and Individual-Level
Variables in Community-Level Studies

The Journal devoted space in the
May 1994 issue to the design and analytic
problems of ecological studies.'-5 Those
same problems are surely germane to the
community intervention trials reported in
the current issue. A question generally
neglected in such trials but addressed in
our previous issue is the reconciliation of
the common disparities between indi-
vidual- and group-level analyses.

At the heart of the matter are two
basic facts. First, some characteristics are
unique to individuals, and while they
cannot be captured directly at group level,
they can yet impinge on the results of
group-level analysis through their distribu-
tions and interactions with other individu-
als and the group. Conversely, other
characteristics are unique to groups, and
while they cannot be captured at indi-
vidual level, they too can impinge on the
results of individual-level analysis that
compares groups.

Susser4 designated independent, de-
pendent, and associated variables that
ostensibly occur at both the individual and
group levels, but may act differently at each
level; he designated integral and contextual
variables as unique to the group level.
Koopman2 emphasized the dependent hap-
penings first described by Ronald Ross6
and the necessity, in other words, to take
analytic account of the group effects when
the outcome in one individual affects the
outcome in other individuals, a circum-
stance characteristic of both infectious
disease and group behavior. The reader is
referred to Koopman's paper and the
references contained therein for appropri-
ate nonlinear dynamical methods.2

Those responsible for the design and
analysis of community intervention trials
will also benefit from the study of the
statistical properties of cluster sampling
(see, e.g., Donner et al.7 and Donner8).
An attractive feature of the analysis of
cluster samples is that it enables one to fit
simple individual-level models without
cluster indicators, while adjusting for the
correlation between individual responses

within clusters. The latter adjustment is of
note because in trials with a large number
of small communities, a positive correla-
tion between responses of community
members decreases the effective sample
size and could result in a loss of power.
Some of the trials reported in this issue
circumvent this problem by analyzing only
group-level data, as is appropriate in
randomized trials with the community as
the unit of randomization.

For the remainder of this annotation,
we focus on the changes in regression
coefficients that can arise when group-
level data are used instead of individual-
level data in situations in which different
exposures (interventions) occur within
groups (communities). The assumption of
linear relationships is convenient but not
obligatory. We do assume the simplest
case of statistically independent re-
sponses, given exposures and specific
group membership. Note that even within
this restricted case, responses of pairs of
members from the same group will appear
correlated when such pairs are considered
from group to group; this is because of the
common action of group-level effects.

To reduce the discussion to its ele-
ments, we consider three variables only:
individual-level exposure, x; individual out-
come, y; and a grouping variable, G, which
serves to identify the distinct group to
which an individual belongs. G usually
specifies a finite number of discrete groups
but need not do so: we allow groups to be
defined by levels of a quantitative variable.
To abstract from sampling variability, we
shall assume large samples within groups
and use the convenient notation of math-
ematical expectation.

Consider a model that specifies a
linear relation at the individual level
between x and y, given membership in
group G:

E(y ix, G) = a + O3x +f(G), (1)
where the left side of the model denotes
the conditional mean ofy, given x and G.
Model (1) is additive with respect to the
effects of x and G, so that ,B = Iw is the

within-group regression coefficient of in-
terest, constant across all groups. We
specify the group effectf(G) as an entirely
arbitrary function to allow for various
possibilities. Thus, if there are k distinct
groups, a conventional form for the group
effect would be

f(G) = y1I[G = 1]
+ * +yk-1I[G = k - 1],

where I[G = i] is a zero-one indicator for
membership in group i, and -yi is the
difference in mean response y between
group i and reference group k, given fixed
exposure x. Alternatively, if groups are
defined by levels of a quantitative variable
(denoted by G as well), then f(G) could
assume the linear formf(G) = yG or any
other appropriate function of G.

The group effect f(G) is straightfor-
ward to observe with individual-level data.
When we move to group-level variables
X = E(xIG) and Y = E(yIG) by taking
averages within groups, model (1) implies
that

E(yIG) = a + PE(xIG) +f(G),

or simply that

Y = a + ,BX + f(G). (2)

In ecological analysis, the group effects
f(G) are generally unavailable, entering
(2) as perturbations of the linear relation
between group variablesX and Y. Unlike
ordinary error terms in regression models,
however, f(G) may be correlated with X,
leading to a different regression equation.
Moreover, f(G) may not even be linearly
related to X. To investigate these circum-
stances a bit further, we suppose that the
relation betweenXand Yappears approxi-
mately linear; thus, for ecological analysis,
one will obtain the best linear predictor of
YgivenXbased on the observed pairs (X,
Y). The best linear predictor of Ygiven X,
BLP(YIX), is that linear function of X
that minimizes the mean squared error
E[Y - L(X)}2 among all linear functions
L(X), where the expectation is taken with
respect to the distribution of (X, Y) across
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groups.* We distinguish here between
BLP(YIX) and the true regression of Yon
X, E(YIX) because the latter may not be a
linear function ofX.** The coefficients of
BLP(YIX) = a + bX are given by a =
EY - bEX and b = cov(X, Y)/var(X),
which agree with the familiar formulas for
regression theory in which E(YIX) is
assumed to be linear.

Given model (2), it is easy to show
that the best linear predictor of YgivenX
is BLP(YIX) = (ct+ c) + (1B + d)X,
where c and d are the coefficients of the
best linear predictor of f(G) given X,
BLP(f(G) IX) = c + dX, with c =
Ef(G) - dEX and d = cov(f(G), X)I
var(X). The ecologic coefficient of X is
thus Pe = 13 + d, and we see that 13e = P3w if
and only if d = 0. This occurs when either
f(G) is identically zero, or the group effect
f(G) is uncorrelated with X. The first
condition occurs when there are no group

*Here and below, expectations, variances, and
covariances of group-level variables across
groups are written EX, var(X), cov(X, Y), etc.
In calculating these quantities, groups are often
weighted proportional to their size. For ex-
ample, with k discrete groups of size ni
(i = 1, . . ., k), EX = MiniXiJXni. For continu-
ous groups, the moments are weighted by the
probability density function of G.
**What characterizes the best linear predictor
is that the residuals Y - BLP(YIX) have mean
zero and are uncorrelated with X. These are
weaker conditions than the usual requirement
in linear regression that the error term have
zero conditional expectation given X.

effects on individual outcome y in model
(1) given individual exposure x-that is,
when outcome is conditionally indepen-
dent of group membership given expo-
sure, even ifG is highly correlated withX.
For example, ifE(y Ix) = a + O3x in model
(1) and G is defined by a grouping of
individuals in subintervals ofx, the ecologi-
cal coefficient of X agrees with 13. The
second condition would occur, for ex-
ample, if groups were constructed as
random samples and thus were uncorre-
lated with X. Of course, one recognizes
these two conditions as being sufficient to
ensure that G is not confounding between
x and y in the linear model (1). In cases
where neither condition obtains, coeffi-
cients Pe and P,,, generally differ.

Ifwe elaborate on model (1) to allow
1 to depend on group, say P = 1(G), then
the shift in the ecological coefficient ofX
contains an additional component. Let
8(G) denote the effect modification of
group G on exposure: b(G) = ,B(G) - P3w,
where 1,,, is the weighted average of
within-group slopes.* Then the ecological

*The weights are proportional to var(x G):
Pw = ElP(G)var(x I G))I/Evar(x G)}. A certain
linear combination of 1,,, and 13e produces the
slope, 1,, of the best linear predictor of y
given x ignoring G. The relation is P, =
V1, + (1 - V)13e, where V = E{var(xIG)}
/[Evar(x G)) + var(X)] gives the proportion
of total variance in x accounted for by the
average within-group variance.

coefficient is e = pi, + d, where the shift
is now d = cov({&(G)X} + f(G),
X)Ivar(X). The additional component
cov(8(G)X,X)Ivar(X) will not generally
equal zero unless the group-effect modifi-
cations 8(G) are uncorrelated with bothX
andX2. El

Bruce Levin
Consulting Editorfor Stastics
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Annotation: Confounding in Epidemiologic Research
In this issue, Simoes et al. used data

from the 1990 Behavioral Risk Factor
Surveillance System to examine the asso-
ciation between leisure-time physical activ-
ity and dietary fat intake in a population-
based sample of US adults.1 The authors
observed that physical activity and dietary
fat were inversely correlated, indepen-
dent ofother sociodemographic and health
characteristics. While they could not
assess fat intake as a percentage of total
caloric intake because of the limited
nature of their dietary information, the
inverse relation with percentage fat intake
would likely have been more pronounced
since physically active individuals con-
sume more calories than sedentary ones.
Based on these data, the authors recom-
mend that epidemiologic studies of either
factor (physical activity or diet) consider
controlling for the other, since the two
may potentially confound each other.

The relevance of this finding relates
to the importance of confounding when
interpreting the results from an epidemio-
logic study. In any study, what we assess is
whether an exposure of interest is associ-
ated with a particular outcome. The
presence of a statistical association, how-
ever, in no way implies that the observed
relation is one of cause and effect; yet,
from a public health standpoint, the
judgment of a cause-effect relationship is
the primary objective in epidemiology. To
decide so is neither simple nor straightfor-
ward: it requires not only an assessment of
the validity of the results seen in an
individual study but also a judgment
based on the totality of evidence.

In order to assess whether the find-
ings of a study represent a valid (or true)
association, we have to determine the
likelihood that alternative explanations-

chance, bias or confounding-could ac-
count for the results.2 Confounding refers
to a mixture of effects between the
exposure and outcome studied and a third
factor (the confounder) that is associated
with the exposure and, at the same time,
an independent risk factor for the out-
come. If not controlled for, confounding
can lead to either the observation of an
artifactual association between exposure
and outcome, or, conversely, the observa-
tion of no association when one truly
exists. For example, the evidence from
epidemiologic studies, many of which did
not control for fat intake, suggests that
physical activity is inversely related to risk
of coronary heart disease.3 Dietary fat
also has been suggested to be an inde-

Editores Note. See related article by Simoes et
al. (p 240) in this issue.
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